Dynamic L-glutamate Signaling in the Prefrontal Cortex and the Effects of Methylphenidate Treatment
نویسنده
چکیده
OF DISSERTATION DYNAMIC L-GLUTAMATE SIGNALING IN THE PREFRONTAL CORTEX AND THE EFFECTS OF METHYLPHENIDATE TREATMENT The prefrontal cortex (PFC) is an area of the brain that is critically important for learning, memory, organization, and integration, and PFC dysfunction has been associated with pathologies including Alzheimer’s disease, schizophrenia, and drug addiction. However, there exists a paucity of information regarding neurochemical signaling in the distinct sub-regions of the PFC, particularly the medial prefrontal cortex (mPFC). The mPFC receives glutamatergic input from a number of brain areas, and functional glutamate signaling is essential for normal cognitive processes. To further understand glutamate neurotransmission, in vivo measurements of glutamate were performed in the cingulate cortex, prelimbic cortex, and infralimbic cortex of anesthetized rats using enzyme-based microelectrode array technology. Measurements of acetylcholine were also performed to examine the relationship between glutamate and other neurotransmitters in the mPFC. The described studies revealed a homogeneity of glutamate and acetylcholine signaling in the mPFC sub-regions, indicating somewhat uniform tonic and phasic levels of these two transmitters. In the infralimbic mPFC of awake freely-moving rats, rapid, phasic glutamate signaling events, termed “transients” were observed and in vivo glutamate signaling was successfully monitored over 24 hour time periods. The effects of methylphenidate (MPH), a stimulant medication with abuse potential that is used in the treatment of attention-deficit hyperactivity disorder, were measured in mPFC sub-regions of anesthetized rats. Data revealed similar tonic and phasic glutamate levels between chronic MPH-treated rats and controls in all sub-regions. Locomotor data from the chronic treatment period supported the behavioral sensitization effects of multiple MPH treatments. Significant effects were observed in locomotor activity, resting levels of glutamate, and glutamate uptake rates in the infralimbic mPFC of awake, freely-moving animals that received chronic MPH treatment. Taken together, this body of work characterizes glutamate signaling in the rat mPFC to a degree never before reported, and serves to report for the first time the effects of MPH on glutamate signaling in the mPFC.
منابع مشابه
Cinnamaldehyde improves methamphetamine-induced spatial learning and memory deficits and restores ERK signaling in the rat prefrontal cortex
Objective(s): Methamphetamine is a stimulant compound that penetrates readily into the central nervous system. Repeated exposure to methamphetamine leads to damage in the dopaminergic and serotonergic axons of selected brain regions. Previous studies showed that cinnamaldehyde improved memory impairment in animals. In the present study, we aimed to elucidate the effects of cinnamaldehyde on met...
متن کاملThe Effects of L-arginine on the Hippocampus of Male Rat Fetuses under Maternal Stress
Introduction: Prenatal stress has deleterious effects on the development of the brain and is associated with behavioral and psychosocial problems in childhood and adulthood. This study aimed to determine the protective effect of L-arginine on fetal brain under maternal stress. Methods: Twenty pregnant Wistar rats (weighting 200-230 g) were randomly divided into 4 groups (n=5 for each group). T...
متن کاملEffect of Trigonelline on Dendritic Morphology in the Hippocampus and Prefrontal Cortex in Streptozotocin-Induced Diabetic Rats
Introduction: Diabetes mellitus causes adverse changes in the neurological morphology of the hippocampus and prefrontal cortex of the brain by increasing oxidative stress. Trigonelline has antihyperglycemic effects and can inhibit oxidative stress. The aim of this study was to evaluate the protective effect of trigonelline on dendritic changes in hippocampal and prefrontal cortex neurons in dia...
متن کاملEffects of systemic and intra-prefrontal cortex administrations of ethanol on spatial working memory in male rats
Introduction: Ethanol can induce a wide spectrum of neurophysiological effects via interaction with multiple neurotransmitter systems and disruption of the balances between inhibitory and excitatory neurotransmitters. Prefrontal cortex is involved in cognitive process including working memory and is sensitive to ethanol. Present study investigates the effects of intraperitoneal (i.p.) admini...
متن کاملThe effect of electroconvulsive therapy on the levels of oxidative stress factors in the prefrontal cortex of depressed rats
Background and Objective: Electroconvulsive therapy (ECT) is one of the effective and less complicated methods for treatment of depression in cases of resistance to common treatments. Given the fundamental role of pre-frontal cortex on changing the mood of depression-related behaviors in depressed patients, the effects of electroconvulsive therapy on enzymatic activity of this cortex were taken...
متن کامل